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The neural processing of incoming stimuli can be analysed from
the electroencephalogram (EEG) through event-related potentials
(ERPs). The P3 component is largely investigated as it represents
an important psychophysiological marker of psychiatric disorders.
This is composed by several subcomponents, such as P3a and P3b,
reflecting distinct but interrelated sensory and cognitive processes
of incoming stimuli. Due to the low EEG signal-to-noise-ratio, ERPs
emerge only after an averaging procedure across trials and subjects.
Thus, this canonical ERP analysis lacks in the ability to highlight EEG
neural signatures at the level of single-subject and single-trial. In
this study, a deep learning-based workflow is investigated to en-
hance EEG neural signatures related to P3 subcomponents already
at single-subject and at single-trial level. This was based on the
combination of a convolutional neural network (CNN) with an ex-
planation technique (ET). The CNN was trained using two different
strategies to produce saliency representations enhancing signatures
shared across subjects or more specific for each subject and trial.
Cross-subject saliency representations matched the signatures al-
ready emerging from ERPs, i.e., P3a and P3b-related activity within
350–400 ms (frontal sites) and 400–650 ms (parietal sites) post-
stimulus, validating the CNN+ET respect to canonical ERP analysis.
Single-subject and single-trial saliency representations enhanced P3
signatures already at the single-trial scale, while EEG-derived repre-
sentations at single-subject and single-trial level provided no or only
mildly evident signatures. Empowering the analysis of P3 modula-
tions at single-subject and at single-trial level, CNN+ET could be use-
ful to provide insights about neural processes linking sensory stimu-
lation, cognition and behaviour.

Keywords

Electroencephalography; P3a; P3b; Convolutional neural networks; Decision ex-
planation

1. Introduction
Event-related potentials (ERPs) are small changes in the

electroencephalogram (EEG), time-locked to a stimulus or
an event and reflecting the underlying neural information
processing [1]. Thanks to the high-temporal resolution of
EEG methodology, analysis of ERPs allows neural process-

ing of an incoming stimulus to be assessed at different stages:
from earlier stages, reflected by short-latency (<200ms post-
stimulus) ERP components and mainly mirroring early sen-
sory processing and passive experience, to later stages re-
flected by long-latency (>250ms post-stimulus) components
and involving cognitive processing of the stimulus such as
stimulus evaluation and decision-making processes [2]. Since
their discovery, ERPs have been largely used to provide in-
sights into the neural mechanisms underlying sensation, cog-
nition and behaviour and have been considered as potential
biological markers of neurological and neurodevelopmental
disorders [3]. In particular, by comparing ERPs from neu-
rological patients with those of matched healthy controls,
steps forward have been made to elucidate impairments in
neural processes potentially underlying the investigated psy-
chopathological behaviour [4].

Among ERP components, P300 has gaining increasing in-
terest in the last 50 years, since this component plays an im-
portant role as psychophysiological marker of psychiatric dis-
orders, such as schizophrenia, bipolar disorder, autism spec-
trum disorder and depression [5–8], and can also be used as
control signal for Brain-Computer Interfaces [9]. The P300
response is an attention-dependent ERP that was first re-
ported in EEG signals by Sutton et al. [10]. This response is
characterized by a positive deflection and can be evoked in an
oddball task [11], where infrequent deviant (or target) stimuli
are presented to the subject immersed in a sequence of fre-
quent background (or standard) stimuli (two-stimulus odd-
ball task, representing the traditional oddball task). The sub-
ject attends to stimuli by responding to targets eithermentally
(e.g., by counting target stimuli) or physically (e.g., by press-
ing a button when the target stimulus occur), while ignor-
ing other stimuli. Then, the P300 response can be analysed
in the elicited ERPs and is characterized by a wave peaking
within the time window between 250 and 500 ms after the
stimulus onset and it ismostly distributed on the scalp around
the midline EEG electrodes—Fz, Cz, Pz—increasing its mag-
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nitude from the frontal to the parietal sites [12]. The odd-
ball P300wave has been consistently related to attention pro-
cesses, memory and contextual updating, and decision mak-
ing [12, 13].

Based on results obtained while changing eliciting condi-
tions and stimulus properties [14, 15], evidence has emerged
that, rather than a single entity, the P300 could be modelled
as a “late positive complex”, consisting of different positive
subcomponents. In particular, at least two main subcompo-
nents can be distinguished, in part temporally overlapped,
namely P3a and P3b which have been associated to distinct,
although interrelated, neural processes [12]. P3a is mostly
distributed around the midline fronto-central electrodes [12]
and is thought to be the marker of orientation of attention
[16]. Indeed, P3a has been associated to initial reallocation
of attention resulting from the detection of attribute changes
in rare stimuli compared to standard ones [12, 17]. More-
over, findings suggest a relationship between stimulus de-
viance and P3a response, that is the greater the mismatch
the larger the P3a amplitude [17, 18]. Neural sources of P3a
seem to be localized in frontal structures and anterior cin-
gulate cortex. P3b has a more posterior-parietal scalp distri-
bution, and longer latency (by 50–100 ms) compared to P3a.
It is assumed to be generated by temporal/parietal structures
and to reflect the match between the stimulus and voluntar-
ily maintained attentional trace, relevant for the task at hand,
involving memory processes and context updating. Accord-
ing to the neuropsychological model of Polich [12], P3a and
P3b reflect two cascade processes, with P3a reflecting atten-
tion engagement driven by deviant stimuli initiated in frontal
structures and P3b linked to the later phase of task-related
stimulus meaning evaluation and working memory compar-
ison.

Due to the difficulty of clearly distinguishing these two
components in the traditional two-stimuli oddball task, a
modification of this task, resulting in a three-stimulus odd-
ball task, is often used to elicit and investigate these two sub-
components. This paradigm is obtained by inserting a rare
non-target stimulus (distractor or novel stimulus) into the se-
quence of rare targets and frequent standard stimuli, allowing
clearly distinguishable P3a and P3b to be obtained in response
to the distractor stimuli and target stimuli, respectively. In
particular, being themismatchwith the target stimulus larger
for the distractor than for the target, the elicited P3a is more
evident in the ERPs to distractors than to targets; on the con-
trary, target ERPs contain a more evident P3b component
than distractor ERPs, as only targets are task-relevant stim-
uli. Investigating both P3b and P3a components is of high in-
terest to study cognitive functions, as they can contribute to
better characterize distinct neural subprocesses and may also
better discriminate between healthy and pathological condi-
tions; for example, P3a has been shown to be more sensitive
than P3b in Parkinson’s disease [19], depression [20], alco-
holism [21] and psychosis [22].

EEG signals are inherently noisy; thus, ERP components
emerge only after averaging across trials and subjects (grand
averaging procedure), which is the canonical ERP analysis
derived from EEG. Therefore, these components and their
interpretation may not hold at the subject and/or trial level
[23, 24]. Thus, investigating component peaks after the
grand averaging procedure may hinder the ability to detect
and investigate EEG features at the level of single subject
or single trial, and consequently, may limit the assessment
of relationships between these features and behaviour [25]
and the assessment of meaningful variability across subjects
and even across trials within the same subject. To overcome
this limitation, EEG features can be derived without relying
on canonical analysis based on ERP component peaks. To
this aim, time-frequency decomposition and data-driven ap-
proaches, such as machine learning and deep learning algo-
rithms, may represent useful processing steps to obtain reli-
able estimates of EEG features at the level of single-subject
and single-trial, improving the capability to functionally re-
late EEG features to behavioural performance [25].

In particular, deep learning algorithms—representing a
branch of machine learning techniques—consist of computa-
tional models designed by stacking layers of artificial neurons
(deep neural networks) learning hierarchical feature repre-
sentations of the input signals via multiple levels of abstrac-
tion; that is, deep neural networks learn complex non-linear
functions that map inputs to feature representations. In the
last decade, deep learning has gained large popularity in fields
such as computer vision, speech recognition and natural lan-
guage processing, to process and classify complex data such
as images and time series [26]. Recently, deep neural net-
works have been started to be explored alsowith EEG,mainly
for classification purposes, e.g., to discriminate among tri-
als corresponding to different conditions during a given task
[27]. The most common deep learning approach for EEG
classification utilizes convolutional neural networks (CNNs)
[28]. These are specialized feed-forward neural networks in-
cluding convolution operators at least in one layer and are
inspired by the hierarchical structure of the ventral stream
of the visual system. In CNNs, neurons with specific lo-
cal receptive fields are stacked on top of others; thus, recep-
tive fields of neurons increase with the network depth and
learned features increase in complexity and abstraction [29].
When CNN is trained in a supervised manner (e.g., in clas-
sification), it automatically learns classification-relevant fea-
tures from the input EEG signals (i.e., class-discriminative
features) based on labelled input examples (training stage),
and then exploits this learning to classify previously un-
seen inputs (inference stage). Importantly, CNNs can be fed
with raw input signals; therefore, these algorithms are ca-
pable of exploiting the entire temporal and spatial informa-
tion contained in the EEG signal to extract the most class-
discriminative features. This represents an important ad-
vantage compared to other more traditional machine learn-
ing techniques (mainly based on linear discriminant analy-
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sis, support vector machines, Riemannian geometry [30, 31])
that can handle only limited aspects and/or time points of the
EEG data [32], thus, not accounting for the overall EEG in-
formation; hence, relevant features (and the underlying neu-
ral processes) may be ignored in these approaches. In the last
years CNNs have been successfully applied to several EEG
classification problems, such as the classification of motor ac-
tivity both imagined and executed [33–37], classification of
emotions [38, 39] and seizure detection [40]; furthermore,
CNNs have found large application to detect the P300 event
from single EEG trials [31, 33, 41–45], also in the perspec-
tive of use these algorithms inside Brain-Computer Interface
(BCI) systems [9].

Crucially, CNNs not only represent powerful tools for
EEG classification, but may also provide novel approaches
to improve EEG analysis and interpretation, in particular by
exploiting post-hoc (i.e., applied after the training stage) ex-
planation techniques (ET). These are techniques aimed at ex-
plaining the features learned by the CNN and that the CNN
mostly relies on to discriminate among the classes [46]. Due
to the automatic feature learning provided by the CNN, the
composition CNN+ET represents a useful non-linear tool to
explore the neural processes involved in the classified condi-
tions in a data-driven manner, possibly contributing to vali-
date and also inform cognitive neuroscience knowledge. It is
noteworthy that, depending on the training strategy adopted
for the CNN (e.g., using signals collected across subjects or
signals within single subjects), the features learned by the
CNNs may evidence common neural signatures across sub-
jects (representing general task-relevant features), or may
evidence neural signatures subject-specific and variability
among subjects. Among ETs, saliency maps [47] outline the
features within each single input EEG trial that mostly con-
tribute to drive the correct decision (i.e., the correct output
class) in the trained CNN; hence, saliency maps represent the
timepoints and channels in each EEG input trial that aremore
relevant for the correct classification of that input example.
Since this technique outlines the relevant features in the do-
main of input EEG signals (which represents a directly in-
terpretable domain), saliency maps can be easily put in rela-
tion with ERP correlates. In addition, being the classification
performed at the single trial level, saliency maps outline EEG
features at the time scale of single trial.

The aim of the present study is to go behind the simple ap-
plication of CNNs for P3 decoding—as already amply investi-
gated in literature [31, 33, 41–45]—but rather to explore the
potentialities of the combination CNN+ET as a data-driven
EEG analysis tool in the investigation of the electrophysi-
ological signatures related to P3 (in particular, to its main
subcomponents P3a and P3b), and to test its ability to en-
hance relevant signatures already at the level of single-subject
and single-trial. Therefore, the novelty of this study is the
formalization of a procedure CNN+ET useful for analysing
meaningful features in EEG signals in response to events, and
complementary to (and potentially more powerful than) the

more classical ERP analysis. To this aim, we used a CNN to
classify, at the level of single-trial, the EEG responses to tar-
get, distractor and standard stimuli in a 3-stimulus oddball
task collected on several subjects; the CNN was realized us-
ing EEGNet, a previously validated CNN for P300 decoding
[33]. Two different training strategies were adopted, train-
ing CNNs using EEG trials from all subjects and from sin-
gle subjects, so that the obtained classifiers could learn com-
mon cross-subject and subject-specific class-discriminative
features, respectively. Then, saliency maps were used as ET
and were applied to the target and distractor classes, to high-
light the spatio-temporal samples of the input that resulted
more class-discriminative, potentially highlighting P3b- and
P3a-related features. Three different levels of representa-
tions and analyses were possible with this approach: cross-
subject, within-subject and single-trial. The contribution of
this study is twofold:

(i) Test the capability of a CNN to discriminate trials in a
3-stimulus oddball tasks, automatically identifying features in
the input data that correspond to relevant characteristics of
the ERP response (such as different proportions of P3a and
P3b manifestations), by using CNN-derived representations
at the cross-subject level.

(ii) Investigate how the adopted CNN+ET combination
may enhance relevant neural signatures underlying the task
at hand, both at the level of single subject and of single trial,
overcoming the limitation of the canonical ERP analysis de-
rived from a grand averaging procedure over EEG trials.

2. Materials andmethods
In this section, first we present the three-stimulus odd-

ball dataset. Then, we formalize the problem of decoding the
EEG signals of the dataset via CNNs and how this approach,
coupled with an ET, could be used as an analysis tool. Subse-
quently, the specific CNN architecture and training strategies
adopted here are illustrated; finally, the computation of the
saliency maps, used as explanation technique, is described.
2.1 Dataset and pre-processing

In this study we adopted a public dataset [48] (avail-
able at https://openneuro.org/datasets/ds003490/versions
/1.1.0) consisting of EEG signals recorded from 64 electrodes
during a 3-auditory oddball task. Three stimuli were pro-
vided to 25 healthy participants for 200 ms using stereo
speakers: standard stimuli (70% of trials) were 440 Hz sinu-
soidal tones, target stimuli (15% of trials) were 660 Hz sinu-
soidal tones and novel distractors (15% of trials) were sam-
pled from a naturalistic sound dataset [49]. Participantsmen-
tally counted the number of target stimuli ignoring standard
and distractor stimuli, resulting in a covert response (thus re-
moving motor activity influences). A total number of 200
trials (140, 30 and 30 trials, respectively for standard, tar-
get and distractor conditions) were recorded for each partici-
pant. EEG was recorded at 500 Hz with reference at CPz and
ground at AFz.
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In order to be consistent with the reference study by Ca-
vanagh et al. [48] where these signals were first collected and
analysed, we decided to adopt here the same pre-processing
pipeline as in that previous study, using the same version of
the Matlab toolbox EEGlab (version 14_0_0b, Swartz Center
for Computational Neuroscience, UC San Diego, CA, USA)
[50]. The processing steps are described below:

(1) Removal of the very ventral electrode signals (FT9,
FT10, TP9, TP10) as they tend to be unreliable.

(2) Epoching between [–2,2] s respect to stimulus onset.
(3) Re-referencing to an average reference to recover CPz

activity.
(4) Identification of bad channels. To this aim, channels

were separately marked for rejection computing the kurto-
sis of each channel finding outliers (default method used in
the EEGLAB function “pop_rejchan” to perform automatic
channel rejection), and applying the FASTER algorithm [51].
Channels that were automatically labelled for rejection from
both previous algorithms were then rejected. Finally, bad
channels were interpolated using spherical interpolation.

(5) Bad epochs weremarked using the FASTER algorithm
[51] and then removed. After this step, the average number
of trials per participantwas reduced to 130± 2, 29± 1, 29± 1
(mean± standard deviation across participants), respectively
for standard, target and distractor conditions.

(6) Removal of independent components related to eye
blinks.

(7) Re-referencing to an average reference.
(8) Baseline correction from –0.2 to 0 s pre-stimulus.
(9) Band-pass filtering between 0.1–20 Hz. This filter-

ing was included in the pre-processing pipeline of [42]; fur-
thermore, it is worth noticing that this kind of filtering
was performed also in other CNN-based P3 decoding stud-
ies [31, 42, 43, 45] (however, as reported in the Discussion,
we also tested the effect on CNNs performances of maintain-
ing a large frequency content of the signals, between 0.1–40
Hz).

In addition to these steps, to reduce the size of the in-
put in the CNN-based decoding, we downsampled signals to
100 Hz and considered EEG in epochs between [0,1] s post-
stimulus. These steps reduced the time samples of the input
to be processed in the CNN-based decoder. Thus, after this
pre-processing pipeline, each EEG trial was a 2D matrix of
shape (C, T ) = (60, 100) , where C represents the num-
ber of spatial channels (electrodes) and T the number of time
steps.

2.2 CNN-based EEG decoding and analysis
The EEG dataset of each subject participating in the study

consisted of separated pre-processed trials (see Section 2.1)
with each trial belonging to one of the conditions of inter-
est, i.e., standard, target and distractor. Each subject-specific
dataset can be denoted by:

indicating withM (s) the number of trials of the s-th subject
(0 ≤ s ≤ N − 1 whereN is the number of subjects).

X
(s)
i is composed by the pre-processed EEG signals of the

i-th trial, while y(s)i is its associated label:{
X

(s)
i ∈ RC×T , 0 ≤ i ≤ M (s) − 1

y
(s)
i ∈ L = {l0, l1, l2} = { “standard”, “target”, “distractor” }.

(2)
A CNN can be trained to realize a classifier faimed to dis-

criminate between these 3 conditions (3 output classes). In
this supervised learning framework, during a training stage
the system automatically learns, from a training set of EEG
trials, the more relevant features for a correct classification,
so that it can subsequently assign the correct class label to new
unseen trials (belongings to the test set). That is, the CNN
describes the function f :

f
(
X

(s)
i ; θ

)
: RC×T → L, (3)

parametrized in the parameter array θ (whose values are
learned during training), mapping a label to each trialXi

(s),
where Xi

(s) represents the CNN input (2D matrix of shape
(C, T )).

Adopting this 2D representation, CNN inputs preserve
the original EEG structure. Going further deeper in the
CNN, the algorithm processes the single-trial representation
exploiting hierarchically structured features finalized to dis-
criminate among classes (e.g., standard, target or distractor
conditions).

Then, the trained CNN processes test trials Xi
(s) to dis-

criminate between conditions of interest based on the class-
discriminative features learned during training. The knowl-
edge behind the discrimination f

(
Xi

(s); θ
)
operated by the

CNN using the input trial Xi
(s) could be explained by de-

riving the most relevant features in that input example that
drive the correct classification; in this way, meaningful neu-
ral signatures in the EEG input trial can emerge, related to
the neural processes underlying the task at hand. To do so,
the CNN can be paired with an ET, that computes for each
spatio-temporal sample of the input trial Xi

(s), a relevance
score indicating how relevant is that sample for the network
to provide the correct classification. Thus, an ET provides a
relevance representation gof the inputXi

(s):

g
(
X

(s)
i

)
: RC×T → RC×T , (4)

where the function g depends on the trained classifier f ,
on the ground truth label yi(s) assigned to the input trial,
and on the specific method adopted to produce the relevance
(Fig. 1A).

Therefore, according to this approach, each input trial
Xi

(s) is processed by CNN+ET exploiting a highly non-
linear transformation g

(
Xi

(s)
)
aimed to enhance, already at
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Fig. 1. Proposed data-driven EEG analysis tool: workflow and scheme of the adopted CNN. (A) CNN+ET analysis framework. The input EEG trial
Xi

(s) is processed by the CNN-based parametric classifier f
(
Xi

(s); θ
)
. Using f

(
Xi

(s); θ
)
and the correct output label yi(s), the relevance representation

g
(
Xi

(s)
)
is computed. (B) Schematic representation of EEGNet, implementing the parametric classifier f . Only its main layers are represented, for a more

detailed description see Section 2.3.1 and Supplementary Table 1; in particular note that non-linear activation layers have been omitted in this figure,
but they are present in the implementation. The input Xi

(s) is processed by the CNN through many layers (with the layer name reported on the left)
organized in 3 main blocks (spatio-temporal block: yellow, temporal block: green, fully-connected block: grey) to obtain the output conditional probabilities
p
(
lk|Xi

(s)
)
, k = 0, 1, 2. The intermediate output of each layer is reported as a white box with the spatial and temporal dimensions along rows and

columns, respectively. Coloured boxes represent the filters of convolutional (blue boxes) and pooling (red boxes) layers.
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the single trial level, themeaningful information contained in
the EEG signals, by highlighting the spatio-temporal samples
more discriminative for each condition and likely informa-
tive of the neural processing underlying the type of stimulus
provided to the subject.

2.3 Proposed CNN+ET approach

2.3.1 CNN design: EEGNet

In this study we adopted EEGNet [33], a light (in terms
of parameters to fit) CNN previously validated to discrimi-
nate between target and standard stimuli in a 2-stimuli odd-
ball paradigm. This lightweight design was chosen to reduce
the risk of overfitting, as the dataset adopted here consisted
of a small number of examples for each subject (see Section
2.1). In particular, EEGNet is the lightest design among oth-
ers proposed in the literature for P300 decoding [31]; using
one of the other available CNNs (introducing>10K trainable
parameters), the model would be more prone to overfitting.

EEGNet is composed by 3 main blocks (Fig. 1B). The
first one can be referred to as a spatio-temporal block (yel-
low block in Fig. 1B). It first processes the input EEG trial
Xi

(s) to provide temporal features maps by applying convo-
lutional filters to each single electrode (see intermediate out-
put 0 in Fig. 1B). In our implementation, 8 temporal filters
were learned. Next, spatial filters spanning all the electrodes
are learned by applying depthwise convolution, where each
spatial filter is applied to just one previous feature map; the
number of spatial filters learned for each temporal filter was
set to 1 in our implementation (see intermediate output 1 in
Fig. 1B). Then, a layer applying a non-linear activation func-
tion (Exponential Linear Unit, ELU) to the spatially filtered
activations is employed. This layer is followed by an average
pooling layer, to reduce the computational cost; we adopted
average pooling over 3-time steps with stride of 3, and these
averaged activations are provided to the second block (green
block in Fig. 1B). The second block uses depthwise convo-
lution and pointwise convolution (overall realizing a sepa-
rable convolution) to summarize the spatially filtered activi-
ties (see intermediate output 3 in Fig. 1B) in the temporal do-
main; here, separable convolution is designed to learn tem-
poral patterns of about 500 ms on the spatially filtered ac-
tivations. As in the first block, a subsequent layer applying
an ELU activation function was employed, followed by aver-
age pooling (in this implementation over 6 time samples with
a stride of 6) that further reduces temporal samples. Lastly,
these activations were provided to a single fully-connected
layer (see Fig. 1B, grey block) consisting of 3 output neurons
activated via a softmax function to produce the output prob-
ability distribution. Thus, the CNN output provides the con-
ditional probabilities p

(
lk|Xi

(s)
)
, k = 0, 1, 2 for the con-

ditions to be discriminated. Further details about the CNN
and about its hyper-parameters (i.e., non-trainable param-
eters defining the unique functional form of the CNN) are
reported in Supplementary Materials (see Supplementary
Section 1 and Supplementary Table 1).

The architecture comprises also layers aimed to increase
the generalization of the model (i.e., regularizers), such as
batch normalization and dropout layers (with a dropout
probability of 0.5, see also Supplementary Section 1 and
Supplementary Table 1 for further details), in addition to
regularizers applied during the training phase, such as early
stopping. EEGNet hyper-parameters adopted here were dif-
ferent compared to its original formulation [33], as we care-
fully chose them (see Supplementary Table 1) to keep lim-
ited the overall number of trainable parameters (consisting
of only 1259 parameters) in consideration of the very small
dataset handled here, in view of further reducing the risk
of overfitting. CNNs were developed in PyTorch [52] and
trained using a workstation equipped with an AMD Thread-
ripper 1900X, NVIDIA TITANV and 32 GB of RAM. Codes
will be released at https://github.com/ddavidebb/CNN-bas
ed_P3_analysis.git.

2.3.2 Training strategy
The training stage of EEGNet (i.e., optimization of pa-

rameters contained in θ) was performed using two different
training strategies, at cross-subject level and within-subject
level; the former is useful to evidence general EEG signatures
common to all subjects, while the latter can emphasize possi-
ble differences among the subjects. Specifically, the following
strategies were adopted:

(i) Leave-one-subject-out (LOSO) strategy. In this ap-
proach, the data of the s-th subject were held out and used
as test set (thus, the test set corresponds to the entire dataset
D(s) of that subject), while the data of all other 24 subjects
were used as training set. This procedure was repeated until
each subject was selected as test subject; therefore, 25 cross-
subject CNNs were obtained, each one “agnostic” about the
specific s-th subject used for testing.

(ii) Within-subject (WS) strategy. In this approach, for
each s-th subject, a CNN was trained and tested using only
data for that subject, thus, realizing a subject-specific CNN
(θ = θ(s)). Since the dataset of each subject was limited, each
subject-specific dataset D(s) was partitioned into a training
set and a test set adopting a 10-fold stratified cross-validation
scheme. It is worth noticing that considering all the 10 folds
of the cross-validation procedure, all the trials of the dataset
D(s) of that subject were tested.

In both cases, a validation set composed by 20% of the
training examples was extracted and used to define stop cri-
teria (see early stopping below) for the optimization of the
CNN. In WS trainings, the validation set was sampled by
keeping the same class proportion as in the training set (i.e.,
sampling 20% of each class for each subject). In LOSO train-
ings the validation set was equally sampled from the 24 sub-
jects (by sampling 20% of signals from each participant’s
training set) and, in this case too, by keeping the same class
proportion as in the training set.

The cross-entropy between the empirical probability dis-
tribution (defined by training labels) and the model proba-
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bility distribution (defined by CNN outputs) was used as loss
function and was minimized using the Adaptive moment es-
timation (Adam) algorithm [53] with a mini-batch size of 32,
learning rate of 10−4 and other parameters set as in its default
implementation [52]. CNNs were trained for 500 epochs,
early stopping the optimization when the validation loss did
not decrease for 50 consecutive epochs (set on the basis of
the convergence speed of the algorithm via empirical eval-
uations), as also performed previously in [42]. To address
class imbalance, parameter updates were weighted more or
less depending on the class occurrence of the input exam-
ples. In particular, indicating withM0

(s), M1
(s),M2

(s) the
number of trials for standard, target and distractor condi-
tions for the generic s-th subject and given that M0

(s) >

M1
(s) and M0

(s) > M2
(s), class weights were defined as

1,M (s)
0 /M

(s)
1 ,M (s)

0 /M
(s)
2 , respectively for standard, target

and distractor conditions.

2.3.3 Performance metrics
In this study, we used the Area Under the ROC curve

(AUROC) to evaluate the performance of each trained CNN
in the 3-class classification task; this metrics is commonly
adopted to measure performance of P3 decoding at the level
of single trials [33, 42, 44], a task intrinsically characterized
by class imbalance (since P3 is evoked by infrequent stim-
uli as opposed to frequent ones). In particular, the AUROC
(evaluated on the test set for each training strategy) of each
possible pairwise combination of classes (one-vs-one, OVO)
was computed—i.e., standard vs. target, target vs. distractor,
standard vs. distractor - and then averaged across these three
combinations, obtaining a multi-class AUROC (referred as
av-AUROC in this study) [54]. Furthermore, we computed
also the F1 score and Area Under the Precision Recall curve
(AUPR) for the classes whose neural signatures were investi-
gated in this study (i.e., target and distractor conditions), and
these further metrics are reported in the Supplementary Ma-
terials (Supplementary Table 2).

2.3.4 Statistical analysis
To compare the OVO AUROCs and av-AUROCs be-

tweenWS and LOSO strategies, Wilcoxon signed-rank tests
were performed. To correct for multiple tests (4 in to-
tal), a false discovery rate correction at α = 0.05 using the
Benjamini-Hochberg procedure [55] was applied.

2.3.5 Explanation technique: saliency maps computation and
processing

Once networks were trained adopting WS and LOSO
strategies, a post-hoc ET was used to derive useful repre-
sentations about input spatio-temporal samples contributing
more to the discrimination of target and distractor classes to
investigate P3b- and P3a-related correlates. Here we adopted
saliency maps [47] to compute the relevance score of each
sample belonging to the input layer (overall C · T samples
of the single-trial EEG data) for a specific class decision. It
is useful to remember that both in case of LOSO and WS

strategies, the entire dataset D(s) of each subject was tested
(see Section 2.3.2); in the first strategy, using a cross-subject
CNN (trained on the other subjects), in the second case using
subject-specific CNNs (trained in a cross-validation scheme).

For each input trial Xi
(s) belonging to the test set of the

s-th subject, the relevanceGi
(s) = g

(
Xi

(s)
)
was computed

by backpropagating the gradient of the output neuron corre-
sponding to the correct label yi(s) (representing the output
activation, immediately before the softmax function) back to
the input layer (see Fig. 2 for a schematic representation of
the saliency map computation and processing). The rele-
vance map had the same shape as the input (G(s)

i ∈ RC×T )
and each Gi, jk

(s) sample (indicating with j and k rows and
columns, respectively) quantified how much a variation in
the corresponding jk sample of the single trial, i.e.,Xi,jk

(s),
affected the activation of the correct output neuron. That is,
for each subject’s datasetD(s), the associated collection of rel-
evance was given by:

containing one saliency map paired to each input trial. Then,
these 2D trial-specific saliencymapswere averaged across tri-
als belonging to target and distractor classes; in this way, a
saliency map for each output class was obtained for each sub-
ject. No post-processing was applied to the so obtained maps
(e.g., computing the absolute or the square value), preserving
the entire information. However, as the investigated EEG
correlates involve positive modulations in ERPs respect to
the standard condition (i.e., P3a and P3b), in this study we
focused on positive values of the saliency maps, i.e., positive
(negative) perturbations of input samples that increased (de-
creased) the correct class score.

The previous procedure was applied both to cross-subject
CNNs obtained with the LOSO strategy and to subject-
specific CNNs obtained with the WS strategy, resulting in
LOSO and WS saliency maps, respectively (see the diagram
in Fig. 2). In particular, for each subject two saliency maps
(corresponding to target and distractor classes) were ob-
tained both for the LOSO andWS strategies. LOSO saliency
maps, being obtained from models trained on multiple sub-
jects’ distributions, are more likely to reflect optimal class-
discriminative input samples that are shared across subjects.
Therefore, these representations allowed general task-related
class-discriminative input samples to be inspected. Con-
versely, WS saliency maps—obtained from models trained
on subject-specific distributions—are more likely to reflect
subject-specific features. Therefore, these representations
allowed the investigation of inter-subject variability of the
more class-discriminative input samples.

Then, the LOSO and WS saliency maps (two maps for
each subject), were subjected to different processing. In the
LOSO-CNN+ET analysis pipeline, saliency maps were aver-
aged across subjects, separately for each output class of inter-
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Fig. 2. Schematicdiagramof the saliencymapcomputationandprocessingperformedonLOSO (left branch, characterizedbyfLOSO

(
Xi

(s); θ
)

and gLOSO

(
Xi

(s)
)
) andWS (right branch, characterized by fWS

(
Xi

(s); θ(s)
)
and gWS

(
Xi

(s)
)
) models.
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Fig. 3. Grand average ERP: target. (A) The grand average is reported as a 2D heatmap with electrodes and time steps along rows and columns, respectively.
(B) The average temporal pattern obtained by averaging the 2D heatmap of (A) across the subset of electrodes showing more the P3b subcomponent (P3, P1,
Pz, P2, P4, PO3, POz, PO4). The shaded area represents the mean value ± standard error of the mean, while the thick line represents the mean value. (C)
Topological representation of the average contribution of each electrode across all time samples of the 2D heatmap.

est, to obtain a 2D cross-subject saliency map for each out-
put class. Then, the 2D cross-subject saliency map was also
averaged across all electrodes or across all time samples, ob-
taining a temporal cross-subject saliency pattern and a spa-

tial cross-subject saliency pattern, respectively. In addition,
spatial cross-subject patterns were computed averaging the
2D maps only within selected time windows comprising the
main peaks of the temporal cross-subject pattern. These rep-
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resentations allowed an analysis at the cross-subject level re-
sulting from a grand average procedure, similarly to ERPs.
Conversely, in the WS-CNN+ET analysis pipeline, saliency
maps were analysed separately for each subject. For each
subject, the 2D saliency map of each output class was aver-
aged across electrodes or time samples to obtain a temporal
subject-specific saliency pattern and a spatial subject-specific
saliency pattern, respectively. Then, hierarchical agglom-
erative clustering (HAC) [56] was performed on temporal
subject-specific patterns (separately for each output class of
interest), to identify clusters of subjects characterized by dif-
ferent temporal saliency patterns. Different clusters denote
different strategies adopted by the CNN in exploiting input
samples to discriminate a specific class and may reflect dif-
ferences across subjects in the underlying neural processes.
In particular, HAC was performed using a complete linkage
(i.e., farthest neighbour clustering) and adopting the corre-
lation between observations as distance metric (see Supple-
mentary Section 2 of SupplementaryMaterial for a descrip-
tion of the adopted distance metric). Four clusters were con-
sidered and the temporal subject-specific patterns of the sub-
jects within each cluster were averaged to obtain an aver-
age temporal saliency pattern at the level of cluster (tempo-
ral cluster-specific saliency pattern). In addition, the spatial
subject-specific patterns of the subjectswithin each cluster (as
resulted from the clustering in the temporal domain) were
averaged, to obtain an average spatial saliency pattern at the
level of cluster (spatial cluster-specific saliency pattern).

Finally, we performed an analysis to investigate whether
the proposed CNN+ET combination could be useful to en-
hance correlates related to P3a and P3b at the level of sin-
gle subject and single trial compared to a canonical analysis
based on evoked potentials. To this aim, for each condition
of interest (target and distractor), we selected a single sub-
ject belonging to each cluster, as representative of that spe-
cific cluster, and we visually evaluated to what extent the in-
formation contained in the temporal saliency pattern of that
subject and condition were contained and already visible in
the evoked potentials of that subject for that condition (ob-
tained by averaging the EEG trials of that subject correspond-
ing to that condition). To perform such comparison, for each
representative subject selected, evoked potentials were aver-
aged together within a subset of electrodes that showedmore
P3a and P3b components; the temporal saliency maps to be
comparedwere obtained by averaging the 2D subject-specific
saliency maps across the same subset of electrodes too (rather
than across all electrodes). These subsets of electrodes were
P3, P1, Pz, P2, P4, PO3, POz, PO4 (showing more P3b) for
target condition and F1, Fz, F2, FC1, FCz, FC2 (showing
more P3a) for distractor condition (for this choice, see ERPs
in Section 3.1). In this way, the comparison was limited on
a small subset of electrodes that more expressed the specific
ERP component of interest. Lastly, for each of the previous
temporal patterns (i.e., temporal subject-specific saliency pat-
tern and evoked potential, each one averaged across a specific

subset of electrodes) that were both obtained by averaging
across trials, we considered the single constituent trials and
compared the associated saliency at the level of single trial
with the corresponding EEG trial, still maintaining the aver-
aging across the specific subset of electrodes.

3. Results
3.1 Event related potentials

The grand average ERPs of the target and distractor con-
ditions are reported in Figs. 3,4, respectively. The same rep-
resentations for the standard condition are reported in Sup-
plementaryFig. 1. These figures represent the conventional
grand average across EEG trials (of the same condition) and
across subjects, to obtain the evoked potentials.

In particular, grand averages are reported for all elec-
trodes as 2D heatmaps (Fig. 3A and Fig. 4A), showing the
main P3 components, P3a and P3b, with different propor-
tions. The P3a component can be observed especially in
fronto-central/frontal regions (e.g., F1, Fz, F2, FC1, FCz,
FC2, Fig. 4A) for the distractor condition while it is less evi-
dent in the same regions for the target condition (see Fig. 3A).
In addition, the P3b component can be observed for the target
condition in parieto-occipital/parietal regions (e.g., P3, P1,
Pz, P2, P4, PO3, POz, PO4, Fig. 3A), but not for the distractor
condition (Fig. 4A). Lastly, another component with a higher
latency can be individuated in the distractor condition from
centro-parietal to fronto-central regions (e.g., FC1, FC2, C1,
C2, CP1, CP2, Fig. 4A). Averaging the activity across dif-
ferent subsets of electrodes showing more P3a and P3b, the
timing of P3a and P3b components became clearer, i.e., av-
eraging across P3, P1, Pz, P2, P4, PO3, POz, PO4 for the tar-
get condition (Fig. 3B) and across F1, Fz, F2, FC1, FCz, FC2
for the distractor condition (Fig. 4B) (and standard condition
too, Supplementary Fig. 1B). In particular, the P3a and P3b
appeared peaking within the time window 325–375 ms and
500–700 ms, respectively. Lastly, we reported also the over-
all spatial contribution by averaging the grand average of each
electrode across all time samples (Fig. 3C and Fig. 4C), high-
lighting the overall topology of these components over the
entire epoch (0–1000 ms).

3.2 CNN performance
At first, the performance of the CNN on the test set in

the discrimination between the contrasted conditions needs
to be analysed, to validate the CNN in the objective discrimi-
nation task and thus, evaluate whether the CNN learned use-
ful and robust class-discriminative features. This is an im-
portant validation stage as successive steps based on the com-
bination CNN+ET exploit features learned by this system to
derive useful representations and then to analyse P3 subcom-
ponents (see Section 2.3.5).

OVO AUROCs (mean ± standard error of the mean
across the subjects) are reported in Fig. 5A, while av-
AUROCs for each subject (the average across the three OVO
AUROCs, see Section 2.3.3) are shown in Fig. 5B, both for
LOSO strategy andWS strategy. Furthermore, F1 scores and
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Fig. 4. Grand average ERP: distractor. (A) The grand average is reported as a 2D heatmap with electrodes and time steps along rows and columns, respec-
tively. (B) The average temporal pattern obtained by averaging the 2D heatmap of (A) across the subset of electrodes showing more the P3a subcomponent
(FC1, FC2, C1, C2, CP1, CP2). The shaded area represents the mean value± standard error of the mean, while the thick line represents the mean value. (C)
Topological representation of the average contribution of each electrode across all time samples of the 2D heatmap.

AUPRs are reported in the Supplementary Table 2. EEG-
Net scored av-AUROCs of 76.2 ± 1.3% and 70.5 ± 1.2%,
respectively for LOSO and WS models. Cross-subject mod-
els (as obtained with the LOSO strategy) achieved higher av-

AUROCs (p = 2.1 · 10−4) respect to subject-specific models
(as obtained in the WS strategy). This was primarily related
to a significant improvement in the discrimination between
standard vs. distractor conditions (p = 1.7 · 10−5), while
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Fig. 5. CNNperformance. (A) One-vs-one AUROCs using LOSO (red bars) andWS (blue bars) strategies. The height of bars denotes the mean value across
subjects, while the error bar denotes the standard error of the mean. (B) Multi-class AUROCs (also referred as av-AUROCs in the manuscript) at the level of
single subject obtained with the LOSO (red bars) andWS (blue bars) strategies. Note that the participant ID reported on the x-axis reflects the participant ID
of the dataset.

other combinations resulted comparable in performance be-
tween the two strategies (see Fig. 5A). Lastly, subject-level
av-AUROCs (Fig. 5B) were above the value obtained with a
random classifier (i.e.,AUROC = 0.5) in all cases.

3.3 EEG analysis based on the CNN and explanation technique

In this section, the results obtained analysing EEG signals
with the CNN+ET combination are reported. These con-
sisted in relevance representations of the input EEG data that
supported more the discrimination between the three con-
trasted conditions, as operated by EEGNet. In particular, the
relevance is reported for target condition and distractor con-
ditions, as the EEG response associated to these stimuli allow
the analysis of P3b and P3a.

3.3.1 Cross-subject saliency
In Figs. 6,7 the 2D cross-subject saliency maps together

with the derived temporal and spatial cross-subject saliency
patterns are reported for target condition and distractor con-

dition, respectively. These figures are obtained via the appli-
cation of the LOSO CNN+ET procedure (see left branch in
Fig. 2); therefore, they are obtained differently from Figs. 3,4
which represent the canonical grand average ERP derived di-
rectly from EEG trials.

Regarding the temporal cross-subject saliency patterns
(Fig. 6B and Fig. 7B), the temporal windows that mostly con-
tributed to the discrimination were different in the two con-
ditions: they were 0–100 ms and 400–650 ms post-stimulus
for the target condition (see intervals between vertical red
lines in Fig. 6B), and 300–400 ms and 750–850 ms post-
stimulus for the distractor condition (see intervals between
vertical red lines in Fig. 7B). In addition, by visually inspect-
ing the spatial patterns (Fig. 6C and Fig. 7C) it is evident
that the electrodes more class-discriminative over the entire
epoch (0–1000 ms) were parietal sites (P1, P3, P5, P7, Pz,
P2, P4, P5) for the target condition and sites from central to
frontal areas (C1, C6, FC1, FCz, FC2, Fz) for the distractor
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Fig. 6. Cross-subject saliency: target. (A) The 2D cross-subject saliency map is reported as a heatmap. (B) Temporal cross-subject saliency pattern, obtained
by averaging the 2D saliency map across all electrodes. The time intervals where the saliency is higher are denoted by vertical red lines. For these specific
intervals, the topological representation of the spatial cross-subject saliency pattern is also reported, obtained by averaging the saliency values of each electrode
within each time interval. (C) Topological representation of the spatial cross-subject saliency map, obtained by averaging the saliency values of each electrode
over the entire epoch (0–1000 ms).
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Fig. 7. Cross-subject saliency: distractor. (A) The 2D cross-subject saliency map is reported as a heatmap. (B) Temporal cross-subject saliency pattern,
obtained by averaging the 2D saliency map across all electrodes. The time intervals where the saliency is higher are denoted by vertical red lines. For these
specific intervals, the topological representation of the spatial cross-subject saliency pattern is also reported, obtained by averaging the saliency values of each
electrode within each time interval. (C) Topological representation of the spatial cross-subject saliency map, obtained by averaging the saliency values of each
electrode over the entire epoch (0–1000 ms).
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Fig. 8. Cluster analysis: target. For each cluster individuated by hierar-
chical agglomerative clustering, the left panel displays the temporal cluster-
specific saliency pattern (thick line) together with the temporal subject-
specific saliency patterns (thin lines) defining each cluster, while the topo-
logical map on the right displays the spatial cluster-specific saliency pattern.

condition, indeed these sites are characterized by intense red
colour in the map. However, distinct relevant intervals (i.e.,
between the vertical red lines in Fig. 6B and Fig. 7B) may be
related to different electrode contributions, as reported in the
spatial representations within the vertical red lines in Fig. 6B
and Fig. 7B. In particular, these showed a stronger involve-
ment of sites from parieto-occipital to centro-parietal areas
within 400–650 ms than 0–100 ms post-stimulus for the tar-
get condition. In addition, for the distractor condition, the
spatial distribution related to the interval 300–400 ms post-
stimulus highlighted a strong involvement of sites from cen-
tral to frontal areas, while within 750–850 ms post-stimulus
the more contributing electrodes lied also in backward sites
(e.g., centro-parietal sites).

3.3.2 Cluster analysis: subject-specific and trial-specific saliency

In Figs. 8,9 the temporal (left panels, thick black lines)
and spatial (right panels) cluster-specific saliency patterns for
each of the 4 clusters are reported for target and distractor

Fig. 9. Cluster analysis: distractor. For each cluster individuated by
hierarchical agglomerative clustering, the left panel displays the tempo-
ral cluster-specific saliency pattern (thick line) together with the temporal
subject-specific saliency patterns (thin lines) defining each cluster, while the
topological map on the right displays the spatial cluster-specific saliency pat-
tern.

conditions, respectively. Left panels contain also the tempo-
ral subject-specific saliency patterns (thin black lines) belong-
ing to each cluster.

For the target condition, most of the temporal subject-
specific saliency patterns turned out to be grouped into two
clusters: one (cluster 4 with N = 9 subjects) evidenced
higher (positive) saliency in a relatively narrow temporal
window centered at around 500 ms, the other (cluster 2 with
N = 8 subjects) exhibited higher saliency in a larger tem-
poral window approximately around 450 ms. In only a few
cases (cluster 3 with N = 5 subjects), an earlier time win-
dow (approximately between 250 ms and 450 ms) appeared
more salient, although at lower levels compared to previous
clusters. For these clusters, mainly centro-parietal and pari-
etal electrodes were more discriminative, with a spatial dis-
tribution modulated depending on the specific cluster, i.e.,
more right-lateralized distribution for clusters 2, 3 and left-
lateralized for cluster 4. Finally, cluster 1 (with only N = 3
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Fig. 10. Comparison between CNN-derived saliency and EEG-derived representations at single-subject and single-trial levels: target. These
representations are displayed for one representative subject for each of the four clusters of Fig. 8 (each column of Fig. 10 is related to a specific cluster). (A,B)
Evoked potentials directly derived from EEG trials (Fig. 10A) and temporal WS CNN-derived saliency patterns (Fig. 10B) at the level of single subject; both
these representations involve averaging across trials of the same condition and across a subset of electrodes (P3, P1, Pz, P2, P4, PO3, POz, PO4). See Section
2.3.5 for details. (C,D) Single EEG trials (Fig. 10C) and WS CNN-derived saliency pattern (Fig. 10D) at the level of single trials: each row corresponds to a
trial, and the representation in each row still involves averaging across the subset of electrodes. In practice, the patterns in Fig. 10A and 10B correspond to
averaging, across the rows, the representations in Fig. 10C and 10D, respectively.

subjects) seems to collect exceptions not falling in any of the
previous clusters (clusters 2–4); the latter ones, althoughwith
clear differences between one cluster and the other, were
characterized by a main positive peak (unimodal patterns)
mostly developing before 500 ms, while patterns in cluster
1 did not exhibited such trait.

Conversely, for the distractor condition, bimodal distribu-
tions appeared evident (i.e., two main peaks can be individu-
ated in the temporal patterns). Indeed, most of the temporal
subject-specific saliency patterns exhibited two peaks within
two temporalwindows centered at around 350ms and 750ms
(cluster 1 with N = 14 subjects). A few subjects (cluster 3
withN = 3) displayed a similar bimodal pattern but with the
two peaks slightly anticipated. Only in a few cases, unimodal
temporal patterns emerged with higher latencies, i.e., within
windows centered at around 450 ms post-stimulus (cluster
2 with N = 5 subjects). For these clusters, mainly centro-
frontal and frontal electrodes weremore discriminative, with
a different spatial distribution depending on the specific clus-
ter, i.e., a more dispersed centro-frontal distribution for clus-

ter 1, a more frontal distribution focused around the midline
for cluster 2, and a more central distribution focused around
Cz for cluster 3. Finally, cluster 4 (with only three subjects)
is characterized by very small saliency values.

Lastly, for a single representative subject belonging to
each previously computed cluster, Figs. 10,11 display the EEG
evoked potentials (Fig. 10A and Fig. 11A) and the temporal
saliency patterns (Fig. 10B and Fig. 11B) for the target condi-
tion and distractor condition, respectively, at the level of sin-
gle subject. Specifically, Fig. 10A and Fig. 11A report the av-
erage of EEG (target or distractor) trials for the specific sub-
ject (i.e., a subject-level EEG-derived representation) while
Fig. 10B and Fig. 11B report the average of the saliency as-
sociated to the same trials of the same subject (i.e., the WS
CNN+ET representation). In the same figures, the corre-
sponding patterns at the level of single trials of the same sub-
ject (Fig. 10C and Fig. 11C reporting EEG over single trials,
and Fig. 10D and Fig. 11D reporting CNN-derived saliency
over single trials) are shown (see Section 2.3.5 for further de-
tails about the performed processing). It is worth noticing

806 Volume 20, Number 4, 2021



Fig. 11. Comparison between CNN-derived saliency and EEG-derived representations at single-subject and single-trial levels: distractor. These
representations are displayed for one representative subject for each of the four clusters of Fig. 9 (each column of Fig. 11 is related to a specific cluster). (A,B)
Evoked potentials directly derived from EEG trials (Fig. 10A) and temporal WS CNN-derived saliency patterns (Fig. 10B) at the level of single subject; both
these representations involve averaging across trials of the same condition and across a subset of electrodes (FC1, FC2, C1, C2, CP1, CP2). See Section 2.3.5
for details. (C,D) Single EEG trials (Fig. 10C) and WS CNN-derived saliency pattern (Fig. 10D) at the level of single trials: each row corresponds to a trial,
and the representation in each row still involves averaging across the subset of electrodes. In practice, the patterns in Fig. 10A and Fig. 10B correspond to
averaging, across the rows, the representations in Fig. 10C and Fig. 10D, respectively.

that in this case, at variancewith Figs. 8,9, the displayed quan-
tities (both CNN-based saliency patterns and EEG patterns)
refer only to a subset of electrodes (more parietal and more
frontal in case of the target condition and distractor condi-
tion, respectively). It appears evident how saliency patterns
(Fig. 10B,D and Fig. 11B,D) could enhance meaningful fea-
tures not or only little evident in quantities directly derived
fromEEG, i.e., single-subject evoked potentials (Fig. 10A and
Fig. 11A) and single EEG trials (Fig. 10C and Fig. 11C), see
also Section 4.

4. Discussion
In this study, the combination of a CNN (here EEGNet)

with an ET (here gradient-based saliency maps) was adopted
as a data-driven EEG analysis tool to investigate the electro-
physiological signatures associated to P3 subcomponents (i.e.,
P3a and P3b), using EEG signals recorded during a 3-stimulus
oddball paradigm. The adopted CNN+ET, by computing in-
put saliency representations g

(
Xi

(s)
)
, allows a direct un-

derstanding of the more relevant spatial and temporal input

samples when discriminating between standard, target and
distractor stimuli. In addition, coupling the CNN+ET with
a proper CNN training strategy, such as leave-one-subject-
out strategy and within-subject strategy, the obtained rele-
vance results more focused on features shared across subjects
(i.e., common task-related features) and on subject-specific
features, respectively. Therefore, depending on the training
strategy, CNN+ET could provide useful information about
the neural signatures belonging to the input domainmore re-
lated to the specific task investigated or more related to the
single subject. Furthermore, due to the nature of the super-
vised learning approached, performed to provide a discrim-
ination between the contrasted conditions using single EEG
trial as input, the provided CNN+ET can be used to inves-
tigate the more discriminative features already at the level
of single trial. In the following, once commented the CNN
performance in the addressed classification task, these aspects
will be separately discussed.
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4.1 CNN performance
EEGNet scored significantly higher performance when

using cross-subject distributions as input during training
(LOSO) than subject-specific input distributions (WS), espe-
cially in distinguishing standards vs. distractors (see Fig. 5).
This could be due to the extremely compact dataset used in
this study, consisting of 188 trials on average per subject (the
number of trials per subjects depended on the pre-processing
procedure, see Section 2.1). Indeed, when training EEG-
Net with subject-specific distributions, only 170 training tri-
als on average were used within each fold. Conversely, dur-
ing LOSO trainings 24 subjects’ signals were exploited, lead-
ing to 4512 training trials on average. Therefore, despite
LOSO trainings were inherently more challenging due to the
subject-to-subject variability in the input distributions, EEG-
Net performance resulted higher thanWS trainings possibly
due to the availability of a larger training set. In addition, it is
worth mentioning that the LOSO performance achieved by
EEGNet in the addressed 3-classes decoding problem resulted
similar to that obtained in more common 2-classes P300 de-
coding problems (i.e., target vs. standard conditions) [42],
despite the increased difficulty in the classification task due
to the discrimination betweenmore than two conditions (i.e.,
standard vs. target vs. distractor).

Furthermore, EEGNet performance could have been af-
fected by the specific applied pre-processing. In this study,
we kept the pre-processing pipeline unchanged respect to
the study by Cavanagh et al. [48] where the adopted dataset
was collected and presented (see Section 2.1). However,
this filtering may limit the capability of the network to au-
tonomously identify the bands most relevant for classifica-
tion. Therefore, we tested also the CNNs performance when
changing the band-pass filtering from 0.1–20 Hz to 0.1–40
Hz in the pre-processing pipeline; in this case the CNN could
leverage additional information to solve the decoding task or,
conversely, choose to filter out unrelated information. Pro-
viding a larger frequency content in input, a moderate but
significant improvement in CNN performance was obtained;
in the LOSO strategy, av-AUROCs improved to 77.7± 1.1%
compared to 76.2 ± 1.3% (p = 1.87 · 10−2, Wilcoxon
signed-rank test) and in the WS strategy av-AUROCs im-
proved to 73.7 ± 1.4% compared to 70.5 ± 1.2% (p =

1.29 · 10−3).
4.2 CNN-based cross-subject analysis

When compared to ERPs (Figs. 3,4, obtained accord-
ing to the canonical grand average over all EEG trials and
subjects), the temporal cross-subject saliency patterns re-
ported in Figs. 6,7 matched the P3b and P3a timings—400–
650 ms and 350–400 ms post-stimulus, respectively for tar-
get stimuli and distractor stimuli (see Figs. 3B,4B,6B,7B).
Similarly, the spatial cross-subject saliency patterns matched
the P3b and P3a scalp distributions, both when the spatial
saliency patterns were computed over all time samples (see
Figs. 3C,4C,6C,7C) and within 400–650 ms and 350–400 ms
post-stimulus (see Figs. 6B,7B), respectively for the target

condition and distractor condition. It is worth noticing that
this comparison was made possible as cross-subject saliency
patterns were computed performing a grand average by con-
struction (see Section 2.3.5), as done to obtain ERPs. From
this analysis emerges the first of the main contributions of
the proposed approach. Indeed, the findings suggest that the
CNN, without any a priori knowledge about the neural sig-
natures related to target and distractor stimuli, during the
supervised learning was able to automatically capture mean-
ingful class-discriminative features related to P3b and P3a.
In addition, the CNN+ET combination evidenced temporal
and spatial patterns that were shared across subjects (i.e., be-
ing robust across subjects), resulting from a common strategy
exploited by the learning system to distinguish between the
three output classes using multiple subjects’ signals (see Sec-
tion 2.3.2).

Moreover, due the supervised task addressed with the
CNN—i.e., discrimination from single EEG trials between
standard, target and distractor stimuli—the CNN+ET was
able not only to evidence correlates related to P3a and P3b,
but potentially also those related to other P3 subcomponents.
Indeed, other ERPs can be elicited by distractor stimuli, such
as the novelty P300 (which is a third and later subcomponent
after the P3b) [12, 57]; together with P3a, these components
appear to be variants of the same ERP, varying on the basis
of attentional and task demands. In particular, the late rele-
vantwindow (750–850ms) in the response to distractor stim-
uli (Fig. 7), could be related to a later component such as the
novelty P300.

4.3 CNN-based single-subject and single-trial analysis
The cluster analysis performed on temporal subject-

specific saliency patterns evidenced distinct clusters at
subject-level in the temporal and spatial domains that devi-
ated from the shared pattern across subjects discussed in the
previous section (see Figs. 8,9B,C vs. Figs. 6,7B,C). There-
fore, it is possible to better analyse the subject-to-subject vari-
ability, by defining clusters of subjects that responded simi-
larly to stimuli, and differently from other subjects. In partic-
ular, temporal subject-specific saliency patterns related to tar-
get stimuli exhibited two more frequent strategies (see clus-
ters 4, 2 in Fig. 8). These, although presenting a single pos-
itive peak and mainly involving parietal electrodes as in the
corresponding general cross-subject patterns (Fig. 6B,C), re-
vealed specific and distinguishable traits as they are centered
at two slightly different time points (i.e., 500 ms and 450 ms
post-stimulus) with a different dispersion across time points
(i.e., cluster 2 resulted more dispersed in time) and with a
different lateralization of the more contributing electrodes.
When looking to patterns related to distractor stimuli in the
most frequent strategy (see cluster 1 in Fig. 9, includingmore
than half of the subjects), these patterns appeared similar to
the corresponding general cross-subject patterns (in agree-
ment with a large proportion of subjects inside the cluster),
while patterns in the other clusters exhibited larger deviation
from the general cross-subject patterns (e.g., see cluster 2 in

808 Volume 20, Number 4, 2021



Fig. 9, where temporal patterns with a single peak occurred
as opposed to bimodal patterns). Finally, the cluster analy-
sis evidenced some less reliable clusters that are less popu-
lated (e.g., cluster 1 in Fig. 8 which seems to collect excep-
tions rather than representing a real cluster); this may be the
consequence of the small subject-specific datasets. In case of
larger datasets, a larger number of trials per participant my
favor the identification of meaningful features in one subject
similar as in other subjects, avoiding the occurrence of cluster
seemingly collecting exceptions (this may be tested in future
studies on larger datasets).

Importantly, the temporal subject-specific saliency pat-
terns (left panels in Figs. 8,9) showed relevant temporal sam-
ples potentially related to the P3b and P3a already at the level
of single subject. In particular, the potential enhancement
of these P3 components in saliency representations becomes
clearer especially when comparing them with evoked poten-
tials at the level of single subject. Indeed, from Figs. 10,11,
temporal saliency patterns at the level of single subject en-
hanced the relevant processes underlying the task in all re-
ported cases compared to the evoked potentials counterpart,
where meaningful neural signatures were less clear and dis-
tinguishable (e.g., see representative patterns in Fig. 10A for
clusters 1, 2 or in Fig. 11A for cluster 1). However, it is worth
mentioning that in some examples the correlate was notice-
able also in evoked potentials at the level of single subject
(e.g., single-subject representations in Fig. 10A and Fig. 11A
for cluster 4), but saliency representations resulted smoother
and sharper. These considerations about saliency patterns
become even more relevant at the level of single trial, where
the saliency patterns seemed to preserve the well-defined
temporal structure across different trials. On the contrary,
single EEG trials resulted highly de-structured in time, with
only few of them exhibiting P3b- and P3a-related correlates
(e.g., trial 19 for the representative subject of cluster 3 of
Fig. 10C, trials 19, 20 for the representative subject of cluster
1 of Fig. 11C), but without any clear coherence across record-
ing trials, overall. From these results, the secondmain contri-
bution of this study emerges, consisting in disclosing the po-
tentialities of the CNN+ET combination to enhance the cor-
relates related to themain P3 subcomponents (here in healthy
controls) already at the single-trial level (and scaling up, at
the single-subject level); the proposed method demonstrates
the ability to empower the analysis of P3 modulations at the
single-trial and single-subject levels, overcoming the main
limitations of a canonical analysis based on evoked potentials
(i.e., grand average across EEG trials and subjects). In partic-
ular, this is obtained by formalizing a processing CNN-based
pipeline, that allows the analysis to be performed at multiple
scales and domains (across-subjects, within-subject, within-
trial, in time-space domain, or separately in the temporal and
spatial domain). In prospective, the proposed data-driven
analysis tool based on a CNN could be used to advance the
investigation at single-subject level (e.g., to assess between-
subject variability) and also at single-trial level (e.g., to assess

within-subject variability by analysing differences between
early vs. late recorded trials or correct/incorrect response tri-
als), both in healthy subjects but also in patients with neuro-
logical or psychiatric disorders involving P3 alterations, e.g.,
Parkinson’s disease or schizophrenia. In particular, enhanc-
ing neural signatures of stimuli processing at single subject
scale and at single trial scale is of great relevance to explore
the functional relationships of these neural features with hu-
man performance, and to boost the comprehension of the
neural processes linking sensory stimulation, cognition and
behaviour.

It is worth remark that, despite deep learning-based de-
coders are known to require large datasets during training,
the adoption of carefully designed solutions (in terms of num-
ber of parameters to fit) such as EEGNet-derived algorithms,
can be used to derive useful representations in a CNN+ET
framework even using small datasets, e.g., comprising less
than 200 trials per subject in the addressed 3-stimulus odd-
ball paradigm, as suggested by our results. However, the low
number of trials for each subject of the adopted dataset may
have affected the representations at the single-subject level,
obtained with the WS strategy, and, thus, the performed
analysis should be extended on larger datasets (comprising
more trials per subject), to produce a more robust validation
of single-subject representations.

5. Conclusions
In conclusion, we investigated the P3 in its main sub-

components with a CNN+ET workflow, analysing in a data-
driven way the more important spatial and temporal sam-
ples of EEG signals in healthy controls during a 3-stimulus
oddball paradigm. The compositionCNN+ET, depending on
the CNN training strategy (cross-subject andwithin-subject),
was able to extract EEG neural signatures not only shared
across subject (i.e., robust task-related features) as the ones
obtained with a canonical ERP analysis, but also specific for
each subject and for each trial, both in the temporal and spa-
tial domains. Therefore, the CNN+ET can be seen as a trans-
formation of EEG signals able to enhance EEG neural sig-
natures already at the level of single trial (and scaling up at
the level of single subject), providing information that could
increase the understanding of the neural processes underly-
ing the relationship between incoming sensory stimuli, cog-
nition and behaviour.

Future developments may involve the inclusion in the
workflow of elements aimed to further improve the com-
prehension of the learned CNN features (i.e., adoption of di-
rectly interpretable layers, not requiring post-hoc interpreta-
tion techniques) [35, 58], the adoption of larger datasets, and
the application of this approach to signals recorded from pa-
tients with psychiatric disorders, for a better characterization
of the neural signatures associated to these disorders and of
their relationships with clinical signs, potentially contribut-
ing to characterize novel biomarkers for diagnosis and mon-
itoring.

Volume 20, Number 4, 2021 809



Abbreviations
EEG, Electroencephalographic; ERP, Event-Related Po-

tential; CNN, Convolutional Neural Network; BCI, Brain-
Computer Interface; ET, Explanation Technique; ELU, Ex-
ponential Linear Unit; Adam, Adaptive moment estimation;
WS,Within-Subject; LOSO, Leave-One-Subject-Out; ROC,
Receiver Operating Characteristic; AUROC, Area Under the
ROC curve; AUPR, Area Under the Precision-Recall curve;
OVO, One-Vs-One; HAC, Hierarchical Agglomerative Clus-
tering.

Author contributions
Conceived and designed the methodology: DB, EM. Pro-

cessed data: DB. Critically analysed the data: DB, EM.
Wrote the original draft: DB, EM. Reviewed and edited the
manuscript: DB, EM.

Ethics approval and consent to participate
In this study an open access dataset was used (https://open

neuro.org/datasets/ds003490/versions/1.1.0). Refer to the
study [48] for the ethics approval and consent to participa-
tion.

Acknowledgment
We gratefully acknowledge the support of NVIDIA Cor-

poration with the donation of the TITAN V used for this re-
search. The provider was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

Funding
This research received no external funding.

Conflict of interest
The authors declare no conflict of interest.

Supplementarymaterial
Supplementary material associated with this article can be

found, in the online version, at https://www.imrpress.com/j
ournal/JIN/20/4/10.31083/j.jin2004083.

References
[1] Schröder E, Kajosch H, Verbanck P, Kornreich C, Campanella S.

Methodological Considerations about the Use of Bimodal Oddball
P300 in Psychiatry: Topography and Reference Effect. Frontiers
in Psychology. 2016; 7: 1387.

[2] Davies PL. Middle and late latency ERP components discriminate
between adults, typical children, and children with sensory pro-
cessing disorders. Frontiers in Integrative Neuroscience. 2010; 4:
16.

[3] BoutrosNN,GjiniK,ArfkenCL.Advances in electrophysiology in
the diagnosis of behavioral disorders. Expert Opinion on Medical
Diagnostics. 2011; 5: 441–452.

[4] Polich J, Herbst KL. P300 as a clinical assay: rationale, evaluation,
and findings. International Journal of Psychophysiology. 2000; 38:
3–19.

[5] Jeon Y, Polich J. Meta-analysis of P300 and schizophrenia: pa-

tients, paradigms, and practical implications. Psychophysiology.
2003; 40: 684–701.

[6] Roth WT, Pfefferbaum A, Kelly AF, Berger PA, Kopell BS. Au-
ditory event-related potentials in schizophrenia and depression.
Psychiatry Research. 1981; 4: 199–212.

[7] Wada M, Kurose S, Miyazaki T, Nakajima S, Masuda F, Mimura
Y, et al. The P300 event-related potential in bipolar disorder: a sys-
tematic review and meta-analysis. Journal of Affective Disorders.
2019; 256: 234–249.

[8] Cui T, Wang PP, Liu S, Zhang X. P300 amplitude and latency
in autism spectrum disorder: a meta-analysis. European Child &
Adolescent Psychiatry. 2017; 26: 177–190.

[9] Paszkiel S. Data Acquisition Methods for Human Brain Activ-
ity. In: Analysis and Classification of EEG Signals for Brain–
Computer Interfaces (pp. 3–9). Springer International Publishing:
Cham. 2020.

[10] Sutton S, BrarenM, Zubin J, John ER. Evoked-potential correlates
of stimulus uncertainty. Science. 1965; 150: 1187–1188.

[11] Farwell LA, Donchin E. Talking off the top of your head: to-
ward a mental prosthesis utilizing event-related brain potentials.
Electroencephalography and Clinical Neurophysiology. 1988; 70:
510–523.

[12] Polich J. Updating P300: an integrative theory of P3a and P3b.
Clinical Neurophysiology. 2007; 118: 2128–2148.

[13] Donchin E, ColesMGH. Is the P300 component amanifestation of
context updating? Behavioral and Brain Sciences. 1988; 11: 357.

[14] Ritter W, Vaughan HG. Averaged evoked responses in vigilance
and discrimination: a reassessment. Science. 1969; 164: 326–328.

[15] Vaughan HG, Ritter W. The sources of auditory evoked re-
sponses recorded from the human scalp. Electroencephalography
and Clinical Neurophysiology. 1970; 28: 360–367.

[16] Knight R. Contribution of human hippocampal region to novelty
detection. Nature. 1996; 383: 256–259.

[17] Wronka E, Kaiser J, Coenen AML. Neural generators of the au-
ditory evoked potential components P3a and P3b. Acta Neurobi-
ologiae Experimentalis. 2012; 72: 51–64.

[18] Näätänen R. The role of attention in auditory information pro-
cessing as revealed by event-related potentials and other brain
measures of cognitive function. Behavioral and Brain Sciences.
1990; 13: 201–233.

[19] Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y,
Schilmann A, Rodríguez-Ortiz U, Ricardo-Garcell J. The P3a
wave: a reliable neurophysiological measure of Parkinson’s dis-
ease duration and severity. Clinical Neurophysiology. 2015; 126:
2142–2149.

[20] Bruder GE, Kroppmann CJ, Kayser J, Stewart JW, McGrath PJ,
TenkeCE.Reduced brain responses to novel sounds in depression:
P3 findings in a novelty oddball task. Psychiatry Research. 2009;
170: 218–223.

[21] Hada M, Porjesz B, Begleiter H, Polich J. Auditory P3a assessment
of male alcoholics. Biological Psychiatry. 2000; 48: 276–286.

[22] Atkinson RJ, Michie PT, Schall U. Duration mismatch negativity
andP3a in first-episode psychosis and individuals at ultra-high risk
of psychosis. Biological Psychiatry. 2012; 71: 98–104.

[23] Gaspar CM, Rousselet GA, Pernet CR. Reliability of ERP and
single-trial analyses. NeuroImage. 2011; 58: 620–629.

[24] Rousselet GA, Pernet CR. Quantifying the Time Course of Visual
Object ProcessingUsing ERPs: it’s Time to up theGame. Frontiers
in Psychology. 2011; 2: 107.

[25] Bridwell DA, Cavanagh JF, Collins AGE, Nunez MD, Srinivasan
R, Stober S, et al. Moving beyond ERP Components: a Selective
Review of Approaches to Integrate EEG and Behavior. Frontiers
in Human Neuroscience. 2018; 12: 106.

[26] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:
436–444.

[27] Craik A, He Y, Contreras-Vidal JL. Deep learning for electroen-
cephalogram (EEG) classification tasks: a review. Journal of Neu-
ral Engineering. 2019; 16: 031001.

[28] Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert

810 Volume 20, Number 4, 2021

https://openneuro.org/datasets/ds003490/versions/1.1.0
https://openneuro.org/datasets/ds003490/versions/1.1.0
https://www.imrpress.com/journal/JIN/20/4/10.31083/j.jin2004083
https://www.imrpress.com/journal/JIN/20/4/10.31083/j.jin2004083


J. Deep learning-based electroencephalography analysis: a system-
atic review. Journal of Neural Engineering. 2019; 16: 051001.

[29] Lindsay G. Convolutional Neural Networks as a Model of the Vi-
sual System: Past, Present, and Future. Journal of Cognitive Neu-
roscience. 2020; 1–15.

[30] Lotte F, Bougrain L, CichockiA, ClercM,CongedoM,Rakotoma-
monjy A, et al. A review of classification algorithms for EEG-based
brain-computer interfaces: a 10 year update. Journal of Neural En-
gineering. 2018; 15: 031005.

[31] Simões M, Borra D, Santamaría-Vázquez E, GBT-UPM,
Bittencourt-Villalpando M, Krzemiński D, et al. BCIAUT-P300:
A Multi-Session and Multi-Subject Benchmark Dataset on
Autism for P300-Based Brain-Computer-Interfaces. Frontiers in
Neuroscience. 2020; 14: 568104.

[32] Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learn-
ing for healthcare applications based on physiological signals: a
review. Computer Methods and Programs in Biomedicine. 2018;
161: 1–13.

[33] Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP,
Lance BJ. EEGNet: a compact convolutional neural network for
EEG-based brain-computer interfaces. Journal of Neural Engi-
neering. 2018; 15: 056013.

[34] Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M,
Eggensperger K, Tangermann M, et al. Deep learning with con-
volutional neural networks for EEG decoding and visualization.
Human Brain Mapping. 2017; 38: 5391–5420.

[35] Borra D, Fantozzi S, Magosso E. Interpretable and lightweight
convolutional neural network for EEG decoding: Application to
movement execution and imagination. Neural Networks. 2020;
129: 55–74.

[36] Borra D, Fantozzi S, Magosso E. EEGMotor Execution Decoding
via Interpretable Sinc-Convolutional Neural Networks. In: Hen-
riques J, Neves N, de Carvalho P (eds.) XV Mediterranean Con-
ference on Medical and Biological Engineering and Computing
– MEDICON 2019 (pp. 1113–1122). Springer International Pub-
lishing: Cham. 2020.

[37] Paszkiel S, Dobrakowski P. The Use of Multilayer ConvNets
for the Purposes of Motor Imagery Classification. In: Szewczyk
R, Zieliński C, Kaliczyńska M (eds.) Automation 2021: Recent
Achievements in Automation, Robotics and Measurement Tech-
niques (pp. 10–19). Springer International Publishing: Cham.
2021.

[38] Li J, Zhang Z, He H. Hierarchical Convolutional Neural Networks
for EEG-Based Emotion Recognition. Cognitive Computation.
2018; 10: 368–380.

[39] Liu J, Wu G, Luo Y, Qiu S, Yang S, Li W, et al. EEG-Based Emo-
tion Classification Using a Deep Neural Network and Sparse Au-
toencoder. Frontiers in Systems Neuroscience. 2020; 14: 43.

[40] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolu-
tional neural network for the automated detection and diagnosis
of seizure using EEG signals. Computers in Biology andMedicine.
2018; 100: 270–278.

[41] Borra D, Fantozzi S, Magosso E. Convolutional Neural Network
for a P300 Brain-Computer Interface to Improve Social Attention
in Autistic Spectrum Disorder. In Henriques J, Neves N, de Car-
valho P (eds.) XVMediterranean Conference onMedical and Bio-
logical Engineering and Computing –MEDICON2019 (pp. 1837–
1843). Springer International Publishing: Cham. 2020.

[42] Borra D, Fantozzi S, Magosso E. A Lightweight Multi-Scale Con-
volutional Neural Network for P300 Decoding: Analysis of Train-
ing Strategies and Uncovering of Network Decision. Frontiers in
Human Neuroscience. 2021; 15.

[43] Liu M, Wu W, Gu Z, Yu Z, Qi F, Li Y. Deep learning based on
Batch Normalization for P300 signal detection. Neurocomputing.
2018; 275: 288–297.

[44] Manor R, Geva AB. Convolutional Neural Network for Multi-
Category Rapid Serial Visual Presentation BCI. Frontiers in Com-
putational Neuroscience. 2015; 9: 146.

[45] Shan H, Liu Y, Stefanov T. A Simple Convolutional Neural Net-
work for Accurate P300Detection and Character Spelling in Brain
Computer Interface. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence (pp. 1604–1610). AAAI
Press: Stockholm, Sweden. 2018.

[46] Montavon G, Samek W, Müller K. Methods for interpreting and
understanding deep neural networks. Digital Signal Processing.
2018; 73: 1–15.

[47] Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency
Maps. arXiv:13126034. 2014; 54: 52.

[48] Cavanagh JF, Kumar P, Mueller AA, Richardson SP, Mueen A.
Diminished EEG habituation to novel events effectively classifies
Parkinson’s patients. Clinical Neurophysiology. 2018; 129: 409–
418.

[49] Bradley MM, Lang PJ. International Affective Digitized Sounds
(IADS-1): Stimuli, instruction manual, and affective ratings.
Technical Report No B-2. University of Florida, Center for Re-
search in Psychophysiology: Gainesville, FL. 1999.

[50] Delorme A, Makeig S. EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent compo-
nent analysis. Journal of Neuroscience Methods. 2004; 134: 9–21.

[51] Nolan H,Whelan R, Reilly RB. FASTER: Fully Automated Statis-
tical Thresholding for EEG artifact Rejection. Journal of Neuro-
science Methods. 2010; 192: 152–162.

[52] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, et
al. Automatic differentiation in PyTorch. NIPS 2017 Workshop.
Long Beach Convention Center: Long Beach, USA. 2017.

[53] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization.
arXiv:14126980. 2017; 27: 54.

[54] Hand DJ, Till RJ. A Simple Generalisation of the Area Under the
ROC Curve for Multiple Class Classification Problems. Machine
Learning. 2001; 45: 171–186.

[55] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate:
a Practical and Powerful Approach toMultiple Testing. Journal of
the Royal Statistical Society: Series B. 1995; 57: 289–300.

[56] Müllner D. Modern hierarchical, agglomerative clustering algo-
rithms. arXiv:11092378. 2011; 49: 11.

[57] Barry RJ, Steiner GZ, De Blasio FM, Fogarty JS, Karamacoska D,
MacDonald B. Components in the P300: Don’t forget the Novelty
P3! Psychophysiology. 2020; 57: e13371.

[58] Zhao D, Tang F, Si B, Feng X. Learning joint space–time–
frequency features for EEG decoding on small labeled data. Neural
Networks. 2019; 114: 67–77.

Volume 20, Number 4, 2021 811


	1. Introduction
	2. Materials and methods
	2.1 Dataset and pre-processing
	2.2 CNN-based EEG decoding and analysis
	2.3 Proposed CNN+ET approach
	2.3.1 CNN design: EEGNet
	2.3.2 Training strategy
	2.3.3 Performance metrics 
	2.3.4 Statistical analysis
	2.3.5 Explanation technique: saliency maps computation and processing


	3. Results
	3.1 Event related potentials
	3.2 CNN performance
	3.3 EEG analysis based on the CNN and explanation technique
	3.3.1 Cross-subject saliency
	3.3.2 Cluster analysis: subject-specific and trial-specific saliency


	4. Discussion
	4.1 CNN performance
	4.2 CNN-based cross-subject analysis
	4.3 CNN-based single-subject and single-trial analysis

	5. Conclusions
	Abbreviations
	Author contributions
	Ethics approval and consent to participate
	Acknowledgment
	Funding
	Conflict of interest
	Supplementary material
	References

